
Online Regression Competitive
with Changing Predictors

Steven Busuttil and Yuri Kalnishkan

Computer Learning Research Centre and Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom.
{steven,yura}@cs.rhul.ac.uk

Abstract. This paper deals with the problem of making predictions in
the online mode of learning where the dependence of the outcome yt on
the signal xt can change with time. The Aggregating Algorithm (AA)
is a technique that optimally merges experts from a pool, so that the
resulting strategy suffers a cumulative loss that is almost as good as that
of the best expert in the pool. We apply the AA to the case where the
experts are all the linear predictors that can change with time. KAARCh
is the kernel version of the resulting algorithm. In the kernel case, the
experts are all the decision rules in some reproducing kernel Hilbert space
that can change over time. We show that KAARCh suffers a cumulative
square loss that is almost as good as that of any expert that does not
change very rapidly.

1 Introduction

We consider the online protocol where on each trial t = 1, 2, . . . the learner
observes a signal xt and attempts to predict the outcome yt, which is shown to
the learner later. The performance of the learner is measured by means of the
cumulative square loss. The Aggregating Algorithm (AA), introduced by Vovk
in [1] and [2], allows us to merge experts from large pools to obtain optimal
strategies. Such an optimal strategy performs nearly as good as the best expert
from the class in terms of the cumulative loss.

In [3] the AA is applied to merge all constant linear regressors, i.e., experts θ
predicting θ′xt (it is assumed that xt and θ are drawn from Rn). The resulting
Aggregating Algorithm for Regression (AAR) (also known as the Vovk-Azoury-
Warmuth forecaster, see [4, Sect. 11.8]) performs almost as well as the best
regressor θ. In [5] the kernel version of AAR, known as the Kernel AAR (KAAR),
is introduced and a bound on its performance is derived (see also [6, Sect. 8]).
From a computational point of view the algorithm is similar to Ridge Regression.
We summarise the results concerning AAR and KAAR in Sect. 2.3.

In this paper, AA is applied to merge a wider class of predictors. We let θ
vary between trials. Consider a sequence θ1, θ2, . . .; let it make the prediction
(θ1 + θ2 + . . . + θt)′xt on trial t. We merge all predictors of this type and obtain
an algorithm which is again computationally similar to Ridge Regression. We

call the new algorithm the Aggregating Algorithm for Regression with Changing
dependencies (AARCh) and its kernelised version KAARCh. Clearly, our class
of experts is very large and we cannot compete in a reasonable sense with every
expert from this class. However in Sects. 4 and 5 we show that KAARCh can
perform almost as well as any regressor if the latter is not changing very rapidly,
i.e., if each ‖θt‖ is small or only a few are nonzero.

A similar problem is considered in [7], [8], and [9] for classification and regres-
sion. In these publications, this problem is referred to as the non-stationary or
shifting target problem and the corresponding bounds are called shifting bounds.
The work by Herbster and Warmuth in [7] is closest to ours. However, their meth-
ods are based on Gradient Descent and therefore their bounds are of a different
type. For instance, since our approach is based on the Aggregating Algorithm we
get a coefficent for the term representing the cumulative loss of the experts equal
to 1 (see Theorems 3 and 4), whereas those in the bounds of [7, Theorems 14–16]
are greater than 1.

In practice, KAARCh can be used to predict parameters that change slowly
with time. KAARCh is more computationally expensive than the techniques
described in [7], with time and space complexities that grow with time. This is
not desirable in an algorithm designed for online learning; however, a practical
implementation is described in [10]. Essentially, KAARCh is made to ‘forget’
older examples that do not affect the prediction too much. In [10] empirical
experiments are carried out on an artificial dataset and on the real world problem
of predicting the implied volatility of options (the name KAARCh was inspired
by the popular GARCH model for predicting volatility in finance).

2 Background

In this section we introduce some preliminaries and related material required for
our main results. As usual, all vectors are identified with one-column matrices
and B′ stands for the transpose of matrix B. We will not be specifying the size
of simple matrices like the identity matrix I when this is clear from the context.

2.1 Protocol and Loss

We can define online regression by the following protocol. At every moment in
time t = 1, 2, . . . , the value of a signal xt ∈ X arrives. Statistician (or Learner) S
observes xt and then outputs a prediction γt ∈ R. Finally, the outcome yt ∈ R
arrives. This can be summarised by the following scheme:

for t = 1, 2, . . . do
S observes xt ∈ X
S outputs γt ∈ R
S observes yt ∈ R

end for

The set X is a signal space which is assumed to be known to Statistician in
advance. We will be referring to a signal-outcome pair as an example. The per-
formance of S is measured by the sum of squared discrepancies between the
predictions and the outcomes (known as square loss). Therefore on trial t Statis-
tician S suffers loss (yt − γt)2. Thus after T trials, the total loss of S is

LT (S) =
T∑

t=1

(yt − γt)2 .

Clearly, a smaller value of LT (S) means a better predictive performance.

2.2 Linear and Kernel Predictors

If X ⊆ Rn we can consider simple linear regressors of the form θ ∈ Rn. Given a
signal x ∈ X, such a regressor makes a prediction θ′x. Linear methods are easy
to manipulate mathematically but their use in the real world is limited since
they can only model simple dependencies. One solution to this could be to map
the data to some high dimensional feature space and then find a simple solution
there. This however, can lead to what is known as the curse of dimensionality
where both the computational and generalisation performance degrades as the
number of features grow [11, Sect. 3.1].

The kernel trick (first used in this context in [12]) is now a widely used
technique which can make a linear algorithm operate in feature space without
the inherent complexities. Informally, a kernel is a dot product in feature space.
Typically, to transform a linear method into a nonlinear one, the linear algorithm
is first formulated in such a way that all signals appear only in dot products
(known as the dual form). Then these dot-products are replaced by kernels.

For a function k : X ×X → R to be a kernel it has to be symmetric, and for
all ` and all x1, . . . ,x` ∈ X, the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , `

must be positive semi-definite (have nonnegative eigenvalues). For every kernel
there exists a unique reproducing kernel Hilbert space (RKHS) F such that k is
the reproducing kernel of F . In fact, there is a mapping φ : X → F such that
kernels can be defined as

k(x, z) = 〈φ(x), φ(z)〉 .

A RKHS on a set X is a (separable and complete) Hilbert space of real valued
functions on X comprised of linear combinations of k of the form

f(x) =
l∑

i=1

cik(vi,x) ,

where l is a positive integer, ci ∈ R and vi,x ∈ X, and their limits. We will be
referring to any function in the RKHS F as D. Intuitively D(x) is a decision
rule in F that produces a prediction for the object x. We will be measuring the
complexity of D by its norm ‖D‖ in F . For more information on kernels and
RKHS see, for example, [13] and [14].

2.3 The Aggregating Algorithm (AA)

We now give an overview of the Aggregating Algorithm (AA) mostly following [3,
Sects. 1 and 2]. Let Ω be an outcome space, Γ be a prediction space and Θ be
a (possibly infinite) pool of experts. We consider the following game between
Statistician (or Learner) S, Nature, and Θ:

for t = 1, 2, . . . do
Every expert θ ∈ Θ makes a prediction γ

(θ)
t ∈ Γ

Statistician S observes all γ
(θ)
t

Statistician S outputs a prediction γt ∈ Γ
Nature outputs ωt ∈ Ω

end for
Given a fixed loss function λ : Ω × Γ → [0,∞], Statistician aims to suffer a
cumulative loss

LT (S) =
T∑

t=1

λ(ωt, γt)

that is not much larger than the loss

LT (θ) =
T∑

t=1

λ
(
ωt, γ

(θ)
t

)
of the best expert θ ∈ Θ. The AA takes two parameters, a prior probability
distribution P0 in the pool of experts Θ and a learning rate η > 0. Let β = e−η.

We will first describe the Aggregating Pseudo Algorithm (APA) that does not
output actual predictions but generalised predictions. A generalised prediction
g : Ω → R is a mapping giving a value of loss for each possible outcome. At
every step t, the APA updates the experts’ weights so that those that suffered
large loss during the previous step have their weights reduced:

Pt(dθ) = β
λ

“
ωt,γ

(θ)
t

”
Pt−1(dθ) , θ ∈ Θ .

At time t, the APA chooses a generalised prediction by

gt(ω) = logβ

∫
Θ

β
λ

“
ω,γ

(θ)
t

”
P ∗

t−1(dθ) ,

where P ∗
t−1(dθ) are the normalised weights P ∗

t−1(dθ) = Pt−1(dθ)/Pt−1(Θ). This
guarantees that for any learning rate η > 0, prior P0, and T = 1, 2, . . . (see [3,
Lemma 1])

LT (APA) = logβ

∫
Θ

βLT (θ)P0(dθ) . (1)

To get a prediction from the generalised prediction gt(ω) (note that we use ω
since we do not yet know the real outcome of step t, ωt) the AA uses a substitu-
tion function Σ mapping generalised predictions into Γ . A substitution function
may introduce extra loss; however, in many cases perfect substitution is possible.

We say that the loss function λ is η-mixable if there is a substitution function
Σ such that

λ (ωt, Σ(gt(ω))) ≤ gt(ωt) (2)

on every step t, all experts’ predictions and all outcomes. The loss function λ is
mixable if it is η-mixable for some η > 0.

Suppose that our loss function is η-mixable. Using (1) and (2) we can obtain
the following upper bound on the cumulative loss of the AA:

LT (AA) ≤ logβ

∫
Θ

βLT (θ)P0(dθ) .

In particular, when the pool of experts is finite and all experts are assigned
equal prior weights, we get, for any θ ∈ Θ

LT (AA) ≤ LT (θ) +
lnm

η
,

where m is the size of the pool of experts. This bound can be shown to be
optimal in a very strong sense for all algorithms attempting to merge experts’
predictions (see [2]).

The Square Loss Game. In this paper we are concerned with the (bounded)
square loss game (see [3, Sect. 2.4]), where Ω = [−Y, Y], Y ∈ R, Γ = R,
and λ(ω, γ) = (ω − γ)2. The square loss game is η-mixable if and only if η ≤
1/(2Y 2). A perfect substitution function for this game is

γ =
g(−Y)− g(Y)

4Y
. (3)

The Aggregating Algorithm for Regression (AAR). The AA was applied
to the problem of linear regression resulting in the Aggregating Algorithm for
Regression (AAR). AAR merges all the linear predictors that map signals to
outcomes [3, Sect. 3] (a Gaussian prior is assumed on the pool of experts). AAR
makes a prediction at time T by

γAAR = ỹ′X̃(X̃
′
X̃ + aI)−1xT ,

where a is a positive scalar, X̃ = (x1,x2, . . . ,xT)′ and ỹ = (y1, y2, . . . , yT−1, 0)′.
The main property of AAR is that it is optimal in the sense that the total

loss it suffers is only a little worse than that of any linear predictor. By the latter
we mean a strategy that predicts θ′xt on every trial t, where θ ∈ Rn is some
fixed vector. The set of all linear predictors may be identified with Rn.

Theorem 1 ([3, Theorem 1]). For any a > 0 and any point in time T ,

LT (AAR) ≤ inf
θ

(LT (θ) + a‖θ‖2) + Y 2 ln det

(
1
a

T∑
t=1

xtx′t + I

)
.

The Kernel Aggregating Algorithm for Regression (KAAR). KAAR,
the kernel version of AAR introduced in [5], makes a prediction for the sig-
nal xT by

γKAAR = ỹ′(K̃ + aI)−1k̃ ,

where

K̃ =

 k(x1,x1) · · · k(x1,xT)
...

. . .
...

k(xT ,x1) · · · k(xT ,xT)

 , and k̃ =

 k(x1,xT)
...

k(xT ,xT)

 .

Like AAR, KAAR has an optimality property. KAAR performs little worse
than any decision rule D in the RKHS induced by a kernel function k.

Theorem 2 ([5, Theorem 1] and [6, Sect. 8]). Let k be a kernel on a space X
and D be any decision rule in the RKHS induced by k. Then for every a > 0
and any point in time T ,

LT (KAAR) ≤ LT (D) + a‖D‖2 + Y 2 ln det
(

1
a
K̃ + I

)
.

Corollary 1 ([6, Sect. 8]). Under the same conditions of Theorem 2 let c =
supx∈X

√
k(x,x). Then for every a > 0, every d > 0, every decision rule D such

that ‖D‖ ≤ d and any point in time T , we get

LT (KAAR) ≤ LT (D) + ad2 +
Y 2c2T

a
.

If, moreover, T is known in advance, one can choose a = (Y c/d)
√

T and get

LT (KAAR) ≤ LT (D) + 2Y cd
√

T .

3 Algorithm

For our new method, we apply the Aggregating Algorithm (AA) to the regres-
sion problem where the experts can change with time. We call this method the
Aggregating Algorithm for Regression with Changing dependencies (AARCh).
Subsequently, we will kernelise this method to get Kernel AARCh (KAARCh).
Throughout this section we will be using the lemmas given in the appendix.

3.1 AARCh: Primal Form

The main idea behind AARCh is to apply the Aggregating Algorithm to the case
where the pool of experts is made up of all linear predictors that can change
independently with time. We assume that outcomes are bounded by Y , i.e.,
for any t, yt ∈ [−Y, Y] (we do not require our algorithm to know Y). We are
interested in the square loss, therefore we will be using optimal η = 1/(2Y 2) and
substitution function (3).

An expert is a sequence θ1, θ2, . . ., that at time T predicts

x′T (θ1 + θ2 + . . . + θT) ,

where for any t, θt ∈ Rn and xT ∈ Rn. To apply the AA to this problem we need
to define a lower triangular block matrix L, and θ which is a concatenation of
all the θt for t = 1 . . . T , such that1

Lθ =



I 0 · · · · · · 0

I I
. . .

...
...

...
.

...
I I · · · I 0
I I · · · I I




θ1

θ2

...
θT−1

θT

 =


θ1

θ1 + θ2

...
θ1 + θ2 + · · ·+ θT−1

θ1 + θ2 + · · ·+ θT−1 + θT

 .

The matrices I and 0 in L are the n×n identity and all-zero matrices respectively.
We also need to define zt which is xt padded with zeros in the following way

zt =

[
0 · · · 0︸ ︷︷ ︸ x′t 0 · · · 0︸ ︷︷ ︸
n(t− 1) n(T − t)

]′
,

so that
z′tLθ = x′t(θ1 + θ2 + . . . + θt) .

Let at > 0, t = 1, . . . , T , be arbitrary constants. Consider the prior distribu-
tion P0 in the set RnT of possible weights θ with the Gaussian density

P0(dθ) =

(
T∏

t=1

at

)n/2 (η

π

)nT/2

e−η
PT

t=1 at‖θt‖2dθ1 . . . dθT

=

((η

π

)T T∏
t=1

at

)n/2

e−ηθ′Aθdθ ,

where, letting I and 0 be as above, we have

A =


a1I 0 · · · 0

0 a2I
. . .

...
...

. 0
0 · · · 0 aT I

 .

The loss of θ over the first T trials is

LT (θ) =
T∑

t=1

(yt − z′tLθ)2

= θ′L′
(

T∑
t=1

ztz′t

)
Lθ − 2

(
T∑

t=1

ytz′t

)
Lθ +

T∑
t=1

y2
t .

1 The sum θ1 + . . . + θt corresponds to the predictor ut in [7].

Therefore, the loss of the APA is (recall that β = e−η)

LT (APA) = logβ

∫
RnT

βLT (θ)P0(dθ)

= logβ

∫
RnT

((η

π

)T T∏
t=1

at

)n/2

× e−η(θ′L′(PT
t=1 ztz

′
t)Lθ−2(PT

t=1 ytz
′
t)Lθ+

PT
t=1 y2

t +θ′Aθ)dθ

= logβ

∫
RnT

((η

π

)T T∏
t=1

at

)n/2

× e−ηθ′(L′ PT
t=1 ztz

′
tL+A)θ+2η(PT

t=1 ytz
′
t)Lθ−η

PT
t=1 y2

t dθ .

Given the generalised prediction gT (ω) which is the APA’s loss with variable
ω ∈ R replacing yT and using substitution function (3), the AA’s prediction is

γT =
1

4Y
logβ

βgT (−Y)

βgT (Y)

=
1

4Y
logβ

∫
RnT e−ηθ′(L′ PT

t=1 ztz
′
tL+A)θ+2η(PT−1

t=1 ytz
′
tL−Y z′T L)θdθ∫

RnT e−ηθ′(L′ PT
t=1 ztz′tL+A)θ+2η(PT−1

t=1 ytz′tL+Y z′T L)θdθ
.

Let

Q1(θ) = θ′

(
L′

T∑
t=1

ztz′tL + A

)
θ − 2

(
T−1∑
t=1

ytz′tL− Y z′T L

)
θ , and

Q2(θ) = θ′

(
L′

T∑
t=1

ztz′tL + A

)
θ − 2

(
T−1∑
t=1

ytz′tL + Y z′T L

)
θ .

By Lemma 1

γT =
1

4Y
logβ

e−η minθ∈RnT Q1(θ)

e−η minθ∈RnT Q2(θ)

=
1

4Y

(
min

θ∈RnT
Q1(θ)− min

θ∈RnT
Q2(θ)

)
.

Finally, by using Lemma 2 we get

γT =
1

4Y
F

(
L′

T∑
t=1

ztz′tL + A, − 2
T−1∑
t=1

ytz′tL, 2Y z′T L

)

=

(
T−1∑
t=1

ytz′t

)
L

(
L′

T∑
t=1

ztz′tL + A

)−1

L′zT . (4)

3.2 AARCh: Dual Form

Let us define

Z̃ =


z′1
z′2
...

z′T

 ,
√

A =


√

a1I 0 · · · 0

0
√

a2I
. . .

...
...

. 0
0 · · · 0

√
aT I

 , and ỹ =


y1

...
yT−1

0

 .

We can rewrite (4) in matrix notation to get

γT = ỹ′Z̃L
(
L′Z̃

′
Z̃L + A

)−1

L′zT

= ỹ′Z̃L
(√

A
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)√

A
)−1

L′zT

= ỹ′Z̃L
√

A
−1
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)−1√

A
−1

L′zT .

We can now get a dual formulation of this by using Lemma 3:

γT = ỹ′
(
Z̃LA−1L′Z̃

′
+ I
)−1

Z̃LA−1L′zT . (5)

3.3 KAARCh

Since in (5) signals appear only in dot products, we can use the kernel trick to
introduce nonlinearity. In this case we get Kernel AARCh (KAARCh) that at
time T makes a prediction

γT = ỹ′
(
K̄ + I

)−1
k̄ ,

where K̄ =
((∑min(i,j)

t=1
1
at

)
k(xi,xj)

)
i,j

, for i, j = 1, . . . , T , i.e.

K̄ =


1
a1

k(x1,x1) 1
a1

k(x1,x2) · · · 1
a1

k(x1,xT)
1
a1

k(x2,x1)
(

1
a1

+ 1
a2

)
k(x2,x2) · · ·

(
1
a1

+ 1
a2

)
k(x2,xT)

...
...

. . .
...

1
a1

k(xT ,x1)
(

1
a1

+ 1
a2

)
k(xT ,x2) · · ·

(
1
a1

+ . . . + 1
aT

)
k(xT ,xT)

 ,

and k̄ =
((∑i

t=1
1
at

)
k(xi,xT)

)
i
, for i = 1, . . . , T , i.e.

k̄ =


1
a1

k(x1,xT)(
1
a1

+ 1
a2

)
k(x2,xT)

...(
1
a1

+ . . . + 1
aT

)
k(xT ,xT)

 .

4 Upper Bounds

In this section we use the Aggregating Algorithm’s properties to derive upper
bounds on the cumulative square loss suffered by AARCh and KAARCh, com-
pared to that of any expert in the pool.

4.1 AARCh Loss Upper Bound

Theorem 3. For any point in time T and any at > 0, t = 1, . . . , T ,

LT (AARCh) ≤ inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)

+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz′tL
√

A
−1

+ I

)
. (6)

Proof. Given the Aggregating Algorithm’s properties, we know that

LT (AARCh) ≤ logβ

∫
RnT

βLT (θ)P0(dθ)

= logβ

((η

π

)T T∏
t=1

at

)n/2

×
∫

RnT

e−η(θ′(L′ PT
t=1 ztz

′
tL+A)θ−2(PT

t=1 ytzt)Lθ+
PT

t=1 y2
t)dθ .

By Lemma 1 this is equal to

inf
θ

(LT (θ) + θ′Aθ) + logβ


((η

π

)T T∏
t=1

at

)n/2

πnT/2√
det
(
ηL′

∑T
t=1 ztz′tL + ηA

)


= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+ logβ

√√√√√
(
ηT
∏T

t=1 at

)n

det
(
ηL′

∑T
t=1 ztz′tL + ηA

)
= inf

θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+

1
2

logβ

 ∏T
t=1 an

t

det
(
L′
∑T

t=1 ztz′tL + A
)


= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)

− 1
2

logβ

det
(√

A
(√

A
−1

L′
∑T

t=1 ztz′tL
√

A
−1

+ I
)√

A
)

∏T
t=1 an

t


= inf

θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz′tL
√

A
−1

+ I

)
.

4.2 KAARCh Loss Upper Bound

The following generalises Theorem 3. Note that we cannot repeat the proof for
the linear case directly since it involves the evaluation of an integral over the
space RnT .

Theorem 4. Let k be a kernel on a space X, let Dt, t = 1 . . . T , be any decision
rules in the RKHS F induced by k and let D = (D1, D2, . . . , DT)′. Then, for
any point in time T and every at > 0, t = 1, . . . , T ,

LT (KAARCh) ≤ LT (D) +
T∑

t=1

at‖Dt‖2 + Y 2 ln det
(
K̄ + I

)
. (7)

Proof. It will be sufficient to prove this for Dt of the form

ft(x) =
l(t)∑
i=1

c
(t)
i k(v(t)

i ,x) ,

where l(t) are positive integers, c
(t)
i ∈ R, and v(t)

i ,x ∈ X (we use (t) to show that
these parameters can be different for each ft). This is because such finite sums
are dense in the RKHS F . If we take f = (f1, f2, . . . , fT)′, (7) becomes

LT (KAARCh) ≤ LT (f) +
T∑

t=1

at

l(t)∑
i,j=1

c
(t)
i c

(t)
j k(v(t)

i ,v(t)
j) + Y 2 ln det

(
K̄ + I

)
,

(8)
where

LT (f) =
T∑

t=1

yt −
l(t)∑
i=1

c
(t)
i k(v(t)

i ,xt)

2

.

In the special case when X = Rn and k(vi,vj) = v′ivj for every vi,vj ∈ X,
(8) follows directly from (6). Indeed, a kernel predictor ft reduces to the linear

predictor θt =
∑l(t)

i=1 c
(t)
i v(t)

i and the term
∑l(t)

i,j=1 c
(t)
i c

(t)
j k

(
v(t)

i ,v(t)
j

)
equals the

squared quadratic norm of θt. Finally, by Sylvester’s determinant identity (see
also Lemma 4 for an independent proof of this) we know that

det
(
K̄ + I

)
= det

(
Z̃LA−1L′Z̃

′
+ I
)

= det
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)

.

The general case can be obtained by using finite dimensional approximations.
Recall that inherent in every kernel is a function φ that maps objects to the
RKHS F , which is isomorphic to l2 = {α = (α1, α2, . . .)|

∑∞
i=1 α2

i converges}.
Let us consider the sequence on subspaces R1 ⊆ R2 ⊆ . . . ⊆ F . The set Rs =
{(α1, α2, . . . , αs, 0, 0, . . .)} may be identified with Rs. Let ps : F → Rs be the

projection operator ps(α) = (α1, α2, . . . , αs, 0, 0, . . .), φs : X → Rs be φs =
ps(φ), and ks be given by ks(v1,v2) = 〈φs(v1), φs(v2)〉, where v1,v2 ∈ X.

Inequality (8) holds for ks since Rs has a finite dimension. If (8) is violated,
then its counterpart with some large s is violated too and this observation com-
pletes the proof.

5 Discussion

In this section we shall analyse upper bound (7) in order to obtain an equivalent
of Corollary 1. Our goal is to show that KAARCh’s cumulative loss is less or
equal to that of a wide class of experts plus a term of the order o(T).

Estimating the determinant of a positive definite matrix by the product of
its diagonal elements (see [15, Sect. 2.10, Theorem 7]) and using the inequality
ln(1+x) ≤ x (in our case x is small, and therefore the resulting bound is tight),
we get

Y 2 ln det
(
K̄ + I

)
≤ Y 2

T∑
t=1

ln

(
1 + c2

t∑
i=1

1
ai

)

≤ Y 2c2
T∑

t=1

t∑
i=1

1
ai

= Y 2c2
T∑

t=1

T − t + 1
at

,

where c = supx∈X

√
k(x,x).

It is natural to single out the first decision rule D1 and the corresponding
coefficient a1 from the rest. We may think of it as corresponding to the choice of
the ‘principal’ dependency; let the rest of Dt (t = 2, . . . , T) be small correction
terms. Let us take equal a2 = . . . = at = a. We get

LT (KAARCh) ≤ LT (D) +
(

a1‖D1‖2 +
Y 2c2T

a1

)
+

(
a

T∑
t=2

‖Dt‖2 +
Y 2c2T (T − 1)

2a

)
. (9)

If we bound the norm of D1 by d1 and assume that T is known in advance, a1

may be chosen as in Corollary 1. The second term in the right hand side of (9)
can thus be bounded by O

(√
T
)
. If we assume that

∑T
t=2 ‖Dt‖2 ≤ s(T), then

the estimate is minimised by a =
√

Y 2c2T (T − 1)/(2s(T)) and the third term

in the right hand side of (9) can be bounded by O
(
T
√

s(T)
)
. We therefore get

the following corollary:

Corollary 2. Under the conditions of Theorem 4, let T be known in advance
and c = supx∈X

√
k(x,x). For every every d1 > 0 and every function s(T), if

‖D1‖ ≤ d1 and
∑T

t=2 ‖Dt‖2 ≤ s(T), then at, for t = 1, . . . , T , can be chosen so
that

LT (KAARCh) ≤ LT (D) + 2Y cd1

√
T + 2Y c

√
s(T)T (T − 1)/2 .

If s(T) = o(1), then LT (KAARCh) ≤ LT (D) + o(T).

The estimate s(T) = o(1) can be achieved in two natural ways. First, one
can assume that each ‖Dt‖, for t = 2, . . . , T , is small.

Corollary 3. Under the conditions of Theorem 4, let T be known in advance.
For every positive d, d1, and ε, if ‖D1‖ ≤ d1 and, for t = 2, . . . , T ,

‖Dt‖ ≤
d

T 0.5+ε
,

then

LT (KAARCh) ≤ LT (D) + O
(
Tmax(0.5,(1−ε))

)
= LT (D) + o(T) .

Secondly, one may assume that there are only a few nonzero Dt, for t = 2, . . . , T .
In this case, the nonzero Dt can have greater flexibility.

Acknowledgements. We thank Volodya Vovk and Alex Gammerman for valu-
able discussions. We are grateful to Michael Vyugin for suggesting the problem
of predicting implied volatility which inspired this work.

References

1. Vovk, V.: Aggregating strategies. In Fulk, M., Case, J., eds.: Proceedings of the 3rd
Annual Workshop on Computational Learning Theory, Morgan Kaufmann (1990)
371–383

2. Vovk, V.: A game of prediction with expert advice. Journal of Computer and
System Sciences 56 (1998) 153–173

3. Vovk, V.: Competitive on-line statistics. International Statistical Review 69(2)
(2001) 213–248

4. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press (2006)

5. Gammerman, A., Kalnishkan, Y., Vovk, V.: On-line prediction with kernels and
the complexity approximation principle. In: Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, AUAI Press (2004) 170–176

6. Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces.
Technical Report arXiv:cs.LG/0511058 (version 2), arXiv.org (2006)

7. Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. Journal of
Machine Learning Research 1 (2001) 281–309

8. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Transactions on Signal Processing 52(8) (2004) 2165–2176

9. Cavallanti, G., Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with a
simple budget perceptron. Machine Learning (to appear)

10. Busuttil, S., Kalnishkan, Y.: Weighted kernel regression for predicting changing
dependencies. In: Proceedings of the 18th European Conference on Machine Learn-
ing (ECML 2007). (to appear)

11. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
(and Other Kernel-Based Learning Methods). Cambridge University Press, UK
(2000)

12. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the po-
tential function method in pattern recognition learning. Automation and Remote
Control 25 (1964) 821–837

13. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American
Mathematical Society 68 (1950) 337–404

14. Schölkopf, B., Smola, A.J.: Learning with Kernels — Support Vector Machines,
Regularization, Optimization and Beyond. The MIT Press, USA (2002)

15. Beckenbach, E.F., Bellman, R.: Inequalities. Springer (1961)

Appendix

Lemma 1. Let Q(θ) = θ′Aθ + b′θ + c, where θ,b ∈ Rn, c is a scalar and A is
a symmetric positive definite n× n matrix. Then∫

Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ).

Proof. Let θ0 ∈ arg min Q. Take ξ = θ − θ0 and Q̃(ξ) = Q(ξ + θ0). It is easy
to see that the quadratic part of Q̃ is ξ′Aξ. Since 0 ∈ arg min Q̃, the form has
no linear term. Indeed, in the vicinity of 0 the linear term dominates over the
quadratic term; if Q̃ has a non-zero linear term, it cannot have a minimum at 0.
Since Q0 = minξ∈Rn Q̃(ξ), we can conclude that the constant term in Q̃ is Q0.
Thus Q̃(ξ) = ξ′Aξ + Q0.

It remains to show that
∫

Rn e−ξ′Aξdξ = πn/2/
√

detA. This can be proved by
considering a basis where A diagonalises (or see [15, Sect. 2.7, Theorem 3]).

Lemma 2. Let

F (A,b,x) = min
θ∈Rn

(θ′Aθ + b′θ + x′θ)− min
θ∈Rn

(θ′Aθ + b′θ − x′θ) ,

where b,x ∈ Rn and A is a symmetric positive definite n × n matrix. Then
F (A,b,x) = −b′A−1x.

Proof. It can be shown by differentiation that the first minimum is achieved at
θ1 = − 1

2A
−1(b + x) and the second minimum at θ2 = − 1

2A
−1(b − x). The

substitution proves the lemma.

Lemma 3. Given a matrix A, a scalar a and I identity matrices of the appro-
priate size,

(AA′ + aI)−1A = A(A′A + aI)−1 .

Proof.

(AA′ + aI)−1A = (AA′ + aI)−1A(A′A + aI)(A′A + aI)−1

= (AA′ + aI)−1(AA′A + aA)(A′A + aI)−1

= (AA′ + aI)−1(AA′ + aI)A(A′A + aI)−1

= A(A′A + aI)−1

Lemma 4. For every matrix M the equality det(I + M′M) = det(I + MM′)
holds (where I are identity matrices of the correct size).

Proof. Suppose that M is an n × m matrix. Thus (I + MM′) and (I + M′M)
are n× n and m×m matrices respectively. Without loss of generality, we may
assume that n ≥ m (otherwise we swap M and M′). Let the columns of M be m
vectors x1, . . . ,xm ∈ Rn.

We have MM′ =
∑n

i=1 xix′i. Let us see how the operator MM′ acts on a
vector x ∈ Rn. By associativity, xix′ix = (x′ix)xi, where x′ix is a scalar. There-
fore, if U is the span of x1,x2, . . . ,xm, then MM′(Rn) ⊆ U . In a similar way,
it follows that (I + MM′)(U) ⊆ U . On the other hand, if x is orthogonal to xi,
then xix′ix = (x′ix)xi = 0. Hence MM′(U⊥) = 0, where U⊥ is the orthog-
onal complement to U with respect to Rn. Consequently, (I + MM′)|U⊥ = I
(by B|V we denote the restriction of an operator B to a subspace V). There-
fore (I + MM′)(U⊥) ⊆ U⊥.

One can see that both U and U⊥ are invariant subspaces of (I+MM′). If we
choose bases in U and in U⊥ and then concatenate them, we get a basis of Rn.
In this basis the matrix of (I + MM′) has the form[

A 0
0 I

]
,

where A is the matrix of (I + MM′)|U . It remains to evaluate det(A).
First let us consider the case of linearly independent x1,x2, . . . ,xm. They

form a basis of U and we may use it to calculate the determinant of the operator
(I + MM′)|U . However,

(I + MM′)xi = xi +
m∑

j=1

(x′jxi)xj

and thus the matrix of the operator (I + MM′)|U in the basis x1,x2, . . . ,xm is
(I + M′M).

The case of linearly dependent x1,x2, . . . ,xm follows by continuity. Indeed,
m vectors in an n-dimensional space with n ≥ m may be approximated by m in-
dependent vectors to any degree of precision and the determinant is a continuous
function of the elements of a matrix.

